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We study probability weights and measures on finite effect algebras, thus
generalizing the existing theory for orthomodular posets and orthoalgebras. Our
development proceeds somewhat more generally in that we study weights and
measures associated with an antichain in the positive cone of a euclidean vector
space with the standard partial ordering.

1. INTRODUCTION

A foundation for the theory of probability measures (states) on orthomod-

ular lattices, orthomodular posets, and orthoalgebras has been established by

Bennett (1968, 197 0), D’ Andrea et al. (1991), Greechie (1971), Greechie

and Miller (197 0), Gudder (1965, 1988), Hamhalter et al. (1995), KlaÈ y (1985),

PtaÂk and PulmannovaÂ(1991), RuÈ ttimann (1977a, b, 198 0), among others.

For reasons given in Greechie and Foulis (1995), there is now considerable

interest in even more general structures called effect algebras (or D-posets),

and the question naturally arises whether the existing theory of probability

measures on orthoalgebras extends to effect algebras. The purpose of this

paper is to indicate that the answer is affirmative and to further develop and

consolidate the resulting theory. Although our results apply primarily to finite

effect algebras, we shall formulate our theory in the somewhat more general

context of so-called T-weights.
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2. NOTATION AND TERMINOLOGY

The ring of integers and the field of real numbers are denoted by Z and

R , respectively. Also, R + : 5 {a P R ) a $ 0} and Z + : 5 Z ù R +. (The
notation : 5 means equals by definition.) In this paper, all vector spaces are

understood to be over the field R of real numbers.

2.1. Definition. Let V be a vector space and let M # V.

(i) lin(M ) is the linear span of M.
(ii) aff(M ) is the affine span of M.

(iii) con(M ) is the convex hull of M.

(iv) rank(M ) : 5 dim(lin(M )).

(v) If M 5 con(M ), then dim(M ) : 5 dim(aff(M )).

A positive cone in a vector space V is a subset V + of V such that V + 1
V + # V +, R +V + # V +, and V + ù ( 2 V +) 5 {0}. A vector space V with a
distinguished positive cone V + # V is called a partially ordered vector space.

If V is a partially ordered vector space, then the relation # defined for l ,

m P V by l # m iff m 2 l P V + is a translation-invariant partial order on

V. (The abbreviation iff means if and only if.)

2.2. Definition. Let V be a partially ordered vector space.

(i) V + generates V iff V 5 lin(V +), i.e., iff V 5 V + 2 V +.

(ii) A linear functional f on V is positive iff 0 # f( l ) for all l P V +.

(iii) V # V is a cone base for V + iff V 5 con( V ) # V + and every

nonzero element m P V + can be written uniquely in the form m 5
a v with a P R + and v P V .

(iv) j P V + is an order unit iff, for every l P V, there exists a positive

integer k such that l # k j .

(v) A # V is an antichain iff l , m P A with l # m implies l 5 m .

If X and Y are sets, then YX is the set of all functions f : X ® Y. If X Þ
ù , then R X forms a lattice-ordered vector space (a Riesz space) under pointwise
operations and with the standard positive cone ( R +)X. If V is a vector subspace

of R X, then V is partially ordered by the induced positive cone V + : 5 V ù ( R +)X.

2.3. Definition. Suppose that f P R X, M # R X, and Y # X.

(i) f is strictly positive on Y iff 0 , f( y) for all y P Y.

(ii) M is strictly positive on Y iff, for each y P Y, there is at least one
f P M such that 0 , f( y).

(iii) The support of f, in symbols supp( f ), is defined by supp( f ) : 5
{x P X ) f (x) Þ 0}.

The notion of a strictly positive set M # R X will have an important role
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to play in the sequel. Note that f is strictly positive iff the set { f } is strictly

positive, however a strictly positive subset M # R X need not contain any

strictly positive functions at all. If M # ( R +)X, then M is strictly positive on
Y iff Y # ø f P M supp( f ).

If X is a finite nonempty set, then R X is a Euclidean space with the

standard inner product ^ f, g & : 5 ( x P X f(x)g(x) for all f, g P R X. In our

development, elements of R X have dual roles to play. When we are thinking

of such elements simply as functions from X to R , we denote them by

lowercase Latin letters f, g, . . . . However, when we are thinking of them as
corresponding to linear functionals on R X determined as usual by the inner

product, we denote them by lowercase Greek letters n , m , . . . . Thus n P R X

determines the linear functional f j ^ n , f & for all f P R X.

3. MOTIVATION

Let L be a finite effect algebra with unit u and let X be a fixed set of

generators for L (Bennett and Foulis, 1997; Foulis and Bennett, 1994). By

a relation for L we mean an equation of the form

% x P X t(x)x 5 u (1)

where the coefficients in the orthosum are determined by a function t : X ®
Z +. If t : X ® Z + and (1) holds, then t is called a multiplicity function for L
and the set T of all such functions is called the total set of multiplicity
functions for L.

Let T be the total set of multiplicity functions for L. Then T is a finite

antichain in ( Z +)X # ( R +)X and T is strictly positive on X. The elements of

the effect algebra L have the form

p 5 % x P X f(x)x (2)

where f P ( Z +)X and f # t for some t P T. Conversely, if t P T and f P
( Z +)X with f # t, then the orthosum in (2) exists and f determines a unique

element p P L. All information concerning the structure of the effect algebra
L is encoded in the set T (Foulis et al., 1996).

An R -valued measure (or charge) on L is a mapping n : L ® R such

that, for p, q P L, p ’ q Þ n ( p % q) 5 n ( p) 1 n (q) (Foulis and Bennett,

1994). If n is an R -valued measure on L and p P L is given by (2), then

n ( p) 5 ( x P X n (x)f(x) (3)

and it follows that n is determined by its values on X. As a consequence of

(1) and (3), we have
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n (u) 5 ( x P X n (x) f (x) (4)

for all t P T. Conversely, if n : X ® R and the expression on the right side

of (4) is independent of the choice of t P T, then n can be extended uniquely

in accordance with (3) to an R -valued measure on L. The restriction of an

R -valued measure on L to the set of generators X is called a T-weight. The

T-weights form a vector subspace V of R X characterized by the condition

that n P V iff n P R X and

e( n ) : 5 ( x P X n (x)t(x) 5 ^ n , t & (5)

is independent of the choice of t P T. The vector space V is understood to

be partially ordered by the induced positive cone V + : 5 V ù ( R +)X. Evidently

e is a positive linear functional on V.

An R -valued measure v on L is called a probability measure iff v ( p)
P R + for all p P L and v (u) 5 1. The T-weights that correspond to the

probability measures are precisely those that belong to the convex set V : 5
V + ù e 2 1(1). We refer to a T-weight v P V as a T-probability weight.

In applications of the theory of effect algebras, the elements x P X
represent basic outcomes or effects associated with measurements of observ-
ables for a physical system, and each state of the system induces a probability

measure on L. It is traditional to assume that every outcome or effect in X
has a nonzero probability of manifesting itself in some stateÐ in other words,

that V is strictly positive on X.

In view of the foregoing, we propose to concentrate our attention on T-

weights and T probability weights. In fact it turns out that much of the theory
can be developed for the more general situation in which T is contained in

the positive cone ( R +)X of the real vector space R X, and that will be our

approach in what follows.

4. T-WEIGHTS AND T-PROBABILITY WEIGHTS

For the the remainder of this paper, we adopt the following notational

conventions.

4.1. Standing Notation. X is a finite nonempty set, T is a nonempty

subset of ( R +)X, and 0 ¸ T.

4.2. Definition. An element n P R X is called a T-weight iff eT( n ) : 5
^ n , t & is independent of the choice of t P T. The subset of R X consisting of

all T-weights is denoted by V(T ).

Clearly, V(T ) is a vector subspace of R X and eT is a linear functional

on V(T ). We refer to eT as the intensity, the variation, or the trace functional



Probability Weights and Measures on Finite Effect Algebras 3193

corresponding to T. If T is understood, we write simply V and e rather than

V(T ) and eT.

4.3. Definition. For x P X, the linear functional fx : V ® R defined by
fx ( n ) : 5 n (x) for all n P V is called the evaluation functional corresponding
to x.

We regard V as a partially ordered vector space with the induced positive

cone V + : 5 V ù ( R +)X. Note that the evaluation functionals fx , x P X, and

the intensity functional e are positive linear functionals on V. Also V + 5
ù x P X f x

2 1( R +) is a polyhedral cone in V, i.e., it is an intersection of finitely

many closed half-spaces. Furthermore, the evaluation functionals form a total

set of linear functionals on V, i.e., ù x P X ker( fx) 5 {0}. Consequently, every

linear functional on V is a linear combination of the evaluation functionals.

In particular, e can be so expressed.

4.4. Lemma. t P T Þ e 5 ( x P X t(x)fx.

Proof. For n P V,

( ( x P X t(x)fx) ( n ) 5 ( x P X t(x) n (x) 5 ^ n , t & 5 e( n ). n

If T # ( Z +)X is the total set of multiplicity functions for an effect algebra

L with a finite set of generators X, the equation in Lemma 4.4 is an analogue

of Equation (1) in Section 3 with % replaced by ( , x replaced by fx , and u
replaced by e.

4.5. Definition. V (T ) : 5 (V(T ))+ ù (eT)
2 1 (1) and an element v P V (T )

is called a T-probability weight.

Again, if T is understood, we write simply V rather than V (T ). Obviously

V is a convex subset of the positive cone V + in V. The following examples

show that V may be empty, it may consist of a single vector, or it may

be unbounded.

4.6. Examples. Let X 5 {1, 2} and identify c P R X with the vector

( c (1), c (2)) P R 2. (i) If T 5 {( 0, 1), (1, 1), (1, 0)}, then V 5 {( 0, 0)} and

V 5 ù . (ii) If T 5 {( 0,2), (1,1) }, then V 5 {(a, a) ) a P R } and V 5 {(1±2 ,
1±2 ) }. (iii) If T 5 {(1, 0)}, then V is the unbounded set {(1, a) ) 0 # a }.

4.7. Lemma. If V Þ ù , then B # T Þ T ù lin(B) # aff(B).

Proof. Let v P V and let t P T ù lin(B). Then there exist ti P B # T
and ai P R for i 5 1, 2, . . . , n such that t 5 ( i ai ti. Therefore ^ v , t & 5
e( v ) 5 1 for all t P T, so 1 5 ^ v , t & 5 ( i ai ^ v , ti & 5 ( i ai , whence t P aff(B). n

If T is strictly positive on X, the situation in part (iii) of Example 4.6

is ruled out, and in fact V is order bounded (hence norm bounded) in R X.
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4.8. Lemma. If T is strictly positive on X, there exists f P ( R +)X such

that v P V Þ 0 # v # f .

Proof. For each x P X, select tx P T such that tx(x) . 0 and define f P
R X by f (x) : 5 1/tx(x). If v P V , we have 1 5 e( v ) 5 ^ v , tx & $ v (x)tx(x)

for all x P X, and it follows that v # f . n

4.9. Lemma. The following conditions are mutually equivalent:

(i) T is strictly positive on X.

(ii) V + ù ker(e) 5 {0}.

(iii) V is a cone base for V +.

Proof. (i) Þ (ii): Suppose 0 Þ m P V + ù ker(e). Then there exists x P
X with m (x) . 0. But 0 5 e( m ) 5 ^ m , t & $ m (x)t(x) $ 0, so t(x) 5 0 for all

t P T, and T is not strictly positive on X.

(ii) Þ (iii): Assume (ii) and let 0 Þ m P V +. Then a : 5 e( m ) . 0 and

v : 5 (1/a) m P V + ù e 2 1 (1) 5 V with m 5 a v . On the other hand, if m 5
a v , then e( m ) 5 ae( v ) 5 a and v 5 (1/a) m .

(iii) Þ (i): Assume (iii) and suppose T is not strictly positive on X.
Then there exists X 0 P X such that t(x0) 5 0 for all t P T. Let m P R X be

defined for x P X by m (x) : 5 0 if x Þ x0 and m (x0) : 5 1. Then 0 Þ m P
V + with e( m ) 5 0. By (iii), there exists a . 0 and v P V with m 5 a v , so

0 5 e( m ) 5 ae( v ) 5 a, contradicting a . 0. n

If M # R X, then M ’ : 5 {c P R X ) ^ c , f & 5 0 for all f P M }. Also #X
denotes the cardinal number of X.

4.1 0. Theorem. Let t0 P T and let T 2 t0 : 5 {t 2 t0) t P T }. Then:

(i) lin(T 2 t0) 5 V ’ .
(ii) lin(T 2 t0) is independent of the choice of t 0 P T.

(iii) dim(V ’ ) 5 rank(T 2 t0) 5 dim(aff(T )).

(iv) ker(e) 5 T ’ .

(v) rank(T ) 1 dim(ker(e)) 5 #X.

Proof. (i) Let W : 5 lin(T 2 t0). Then, for n P R X, n P W ’ iff ^ v , t 2
t0& 5 0 for all t P T iff ^ n , t & 5 ^ n , t0& for all t P T iff n P V. Therefore,

W ’ 5 V, so W 5 W ’ ’ 5 V ’ . Part (ii) follows immediately from (i).

(iii) Because t0 P T, we have aff(T ) 2 t 0 5 lin(T 2 t0); hence, since

the dimension of an affine subspace is invariant under translation,

dim(aff(T )) 5 dim(aff(T ) 2 t0) 5 dim(lin(T 2 t0))

5 rank (T 2 t0)

Also, dim(V ’ ) 5 dim(lin(T 2 t0)) by (i), and (iii) follows.
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(iv) For n P R X, we have

n P T ’ Û ^ n , t & 5 0 for all t P T Û n P V and e( n ) 5 0

Û n P ker(e)

(v) R X is the direct sum of lin(T ) and T ’ 5 (lin(T )) ’ , so

#X 5 dim( R X) 5 dim(lin(T )) 1 dim(T ’ )

5 rank(T ) 1 dim(ker(e))

by (iv). n

4.11. Corollary. e Þ 0 Þ dim(V ) 5 #X 1 1 2 rank(T ).

Proof. By part (v) of Theorem 4.1 0, rank(T ) 1 dim(ker(e)) 5 #X and,

if e Þ 0, then dim(ker(e)) 5 dim(V ) 2 1. n

4.12. Lemma. Suppose V Þ ù and B # T # lin(B). Then ù Þ B, V(T ) 5
V(B), eT 5 eB , and V (T ) 5 V (B).

Proof. Since 0 ¸ T Þ ù and B # T # lin(B), it follows that 0 ¸ B Þ
ù . Because B # T, we have V(T ) # V(B). Suppose f P V(B) and t P T.

Then t P T ù lin(B) # aff(B) by Lemma 4.7, so there exist ti P B and ai P
R for i 5 1, 2, . . . , n such that t 5 ( i aiti and ( i ai 5 1. Consequently,

^ f , t & 5 ( i ai ^ f , ti & 5 ( i aieB( f ) 5 eB( f ) ( i ai 5 eB( f )

whence f P V(T ) with eB( f ) 5 ^ f , t & 5 eT( f ). Therefore, V(T ) 5 V(B),

eT 5 eB , and it follows that V (T ) 5 V (B). n

4.13. Lemma. Suppose V Þ f and T # S # aff(T ) ù ( R +)X. Then, 0 ¸
S, V(T ) 5 V(S), eT 5 eS , and V (T ) 5 V (S).

Proof. If s P S # aff(T ) ù ( R +)X, then there exist ti P T, ai P R for

i 5 1, 2, . . . n, with s 5 ( i aiti and ( i ai 5 1. Therefore, for n P V(T ),

^ n , s & 5 ( i ai ^ n , ti & 5 ( i aieT( n ) 5 eT( n ) (1)

Thus 0 ¸ S, else we could take s 5 0 and n P V in (1) to obtain the

contradiction 0 5 1. Furthermore, by (1),

n P V(T ) Þ n P V(S ) with es( n ) 5 eT( n )

Since T # S, we also have V(S ) # V(T ), whence V(T ) 5 V(S ) and eT 5 es ,

from which it follows that V (T ) 5 V (S ). n

4.14. Theorem. Suppose V Þ ù , let B be a maximal linearly independent

subset of T, and let B # S # aff(T ) ù ( R +)X. Then 0 ¸ S, V(T ) 5 V(S ),

eT 5 es , and V (T ) 5 V (S ).
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Proof. Since B is a maximal linearly independent subset of T, we have

B # T # lin (B), so 0 ¸ B and Lemma 4.12 implies that ù Þ B, V(T ) 5
V(B), eT 5 eB , and V (T ) 5 V (B). Therefore, by Lemma 4.7, T 5 T ù lin(B)
# aff(B), whence aff(T ) # aff(B). Since B # T, we also have aff(B) # aff(T ),

so aff(T ) 5 aff(B). Thus B # S # aff(B) ù ( R +)X, so by Lemma 4.13 with

T replaced by B, 0 ¸ S, V(B) 5 V(S ), eB 5 eS , and V (B) 5 V (S ). Therefore,

V(T ) 5 V(B) 5 V(S ), eT 5 eB 5 eS , and V (T ) 5 V (B) 5 V (S ). n

If B is a maximal linearly independent subset of T and we are interested
only in assessing the structure of the vector space V(T ), the intensity functional

eT , and the convex subset V (T ), then by Theorem 4.14, we can replace T
by any set between B and aff(T ) ù ( R +)X. For some purposes, it is useful to

enlarge T and for others, to make T smaller.

4.15. Theorem. If V (T ) is strictly positive on X, then T is an antichain.

Proof. Suppose V 5 V (T ) is strictly positive on X and that s, t P T
with s # t but s Þ t. Then x P X Þ 0 # t(x) 2 s(x) and there exists y P
X with 0 , t( y) 2 s( y). Since V is strictly positive, there exists v P V with

0 , v ( y). However, this leads to the contradiction

0 , v ( y)[t( y) 2 s( y)] # ( x P X v (x) [t(x) 2 s(x)]

5 ^ v , t 2 s & 5 ^ v , t & 2 ^ v , s & 5 1 2 1 5 0 n

5. STRICT POSITIVITY

Henceforth, we assume that the following conditions hold.

5.1. Standing Assumption. T # ( R +)X and V # V + # ( R +)X are strictly
positive on X Þ ù .

As a consequence of Assumption 5.1, we have V Þ ù , e Þ 0, and

dim(V ) 5 #X 1 1 2 rank(T ) by Corollary 4.11.

5.2. Lemma. 0 ¸ aff(T ) and aff(T ) ù ( R +)X is an antichain.

Proof. Let S : 5 aff(T ) ù ( R +)X. By Theorem 4.14, 0 ¸ S, V(T ) 5 V(S),

eT 5 eS , and V (T ) 5 V (S). Theorem 4.15 with T replaced by S implies that

S is an antichain. n

5.3. Lemma. There is a strictly positive element a P V .

Proof. For each x P X, select v x P V such that 0 , v x(x). Let n : 5
#X. Since V is convex, a : 5 ( x P X (1/n) v x P V and it is obvious that a is

strictly positive. n
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5.4. Lemma. If a is a strictly positive element of V and n P V, there

exists v P V and there exist a, b P R with 0 , a, b such that n 5 a a 2 b v .

Proof. Assume the hypotheses and choose a . 0 such that a . max{n (x)/
a (x) ) x P X }. Then 0 Þ a a 2 n P V ù ( R +)X 5 V +. By Lemma 4.9, V is

a cone base for V +, so there exists b . 0 and there exists v P V such that

b v 5 a a 2 n . n

5.5. Theorem. (i) V 5 V + 2 V +; (ii) V 5 lin( V ); (iii) aff( V ) 5 e 2 1(1);

(iv) dim( V ) 5 #X 2 rank(T ).

Proof. (i) By Lemmas 5.3 and 5.4, V 5 V + 2 V +. (ii) By Lemma 4.9,

V is a cone base for V + and V 5 V + 2 V + part (i), whence V 5 lin( V ). (iii)

Because V # e 2 1 (1), we have aff( V ) # e 2 1 (1). Conversely, suppose n P
e 2 1 (1) and choose a, b . 0 and v P V with n 5 a a 2 b v as in Lemma

5.4. Then 1 5 e( n ) 5 ae( a ) 2 be( v ) 5 a 2 b, whence n 5 a a 1 (1 2 a) v
P aff( V ). (iv) Because e is a nonzero linear functional on V, (iii) implies that

dim( V ) : 5 dim(aff( V )) 5 dim(e 2 1(1)) 5 dim(V ) 2 1

By Corollary 4.11, dim(V ) 5 #X 1 1 2 rank(T ), and it follows that dim( V )

5 #X 2 rank(T ). n
By a polyhedron , we mean a subset of R X that is an intersection of finitely

many closed half-spaces; by a polytope, we mean a bounded polyhedron. A

good reference for facts about polyhedra and polytopes is GruÈ nbaum (1967).

5.6. Theorem. V is a nonempty polytope.

Proof. We have seen that V + is a polyhedral cone. Therefore, since

e 2 1(1) is an affine subspace of V, it follows that V 5 V + ù e 2 1(1) is a

polyhedron in V # R X. By Lemma 4.8, V is order bounded, whence norm

bounded in R X, and a norm-bounded polyhedron is a polytope. n

5.7. Theorem. The following conditions are mutually equivalent: (i)
# V 5 1; (ii) rank(T ) 5 #X; (iii) dim(V ) 5 1; (iv) ker(e) 5 {0}.

Proof. If # V 5 1, then dim( V ) 5 0, so rank(T ) 5 #X by part (iv) of

Theorem 5.5, whence (i) Þ (ii). That (ii) Þ (iii) follows from the fact that

dim(V ) 5 #X 1 1 2 rank(T ). Since e is a nonzero linear functional on V, it

is clear that (iii) Þ (iv). To prove (iv) Þ (i), assume (iv) and suppose a ,
v P V . Then e( a 2 v ) 5 e( a ) 2 e( v ) 5 1 2 1 5 0, so a 2 v P ker(e)

5 {0} and a 5 v . n

5.8. Definition. We denote the dual space of V by V* and we define

V* 1 # V* to be the set of all positive linear functionals on V.
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Evidently, V* 1 is a cone in V*, e P V* 1 , and all of the evaluation

functionals fx , x P X, belong to V* 1 . Since the evaluation functionals form

a total subset of V*, it follows that V* 1 is a generating cone for V*.

5.9. Theorem. e is an order-unit in V*.

Proof. Let f P V*. By Theorem 5.6, V is compact; hence, f( V ) is
bounded in R . Select k P Z + with f( v ) # k for all v P V and let 0 Þ n P
V +. Since V is a cone base for V +, there exist a . 0 and v P V with n 5
a v , whence

f( n ) 5 af( v ) # ak 5 ake( v ) 5 ke(a v ) 5 ke( n )

and it follows that f # ke. n

If T # ( Z +)X is the total set of multiplicity functions for a finite effect

algebra L, then V* is a universal vector space for vector-valued measures on

L (Foulis and Bennett, 1994). For T # ( R +)X, we have the following, more
general result.

5.1 0. Theorem. Let W be a vector space over R , let w P W, and suppose

that c : X ® W satisfies ( x t(x) c (x) 5 w for all t P T. Then there is a unique

linear transformation C : V* ® W such that C ( fx) 5 c (x) for all x P X.
Furthermore , C (e) 5 w.

Proof. Define f : R X ® W by f ( y) : 5 ( x y(x) c (x). By Theorem 4.10,

R X is the direct sum of V and V ’ 5 lin(T 2 t) for any choice of t P T. Let

h : R X ® V be the projection of R X onto V with ker( h ) 5 V ’ 5 lin(T 2 t).
If s P T, then

f (s 2 t) 5 (
x
s(x) c (x) 2 (

x
t(x) c (x) 5 w 2 w 5 0

so T 2 t # ker( f ), and it follows that ker( h ) # ker( f ). Therefore, there

exists a linear transformation F : V ® W such that f 5 F + h . Let g P V*.

Because V is a finite-dimensional inner-product space under the restriction
of ^ ? , ? & to V, there is a unique g P V such that g( n ) 5 ^ g , n & for all n P V.

Define C : V* ® W by C (g) : 5 F ( g ). For x P X, let x x P R X be the

characteristic set function of {x}. Since the projection h is self-adjoint,

we have

^ h ( x x), n & 5 ^ x x , h ( n ) & 5 ^ x x , n & 5 n (x) 5 fx( n )

for all n P V, so the linear functional fx P V* corresponds to the vector

h ( x x) P V, and it follows that

C ( fx) 5 F ( h ( x x)) 5 f ( x x) 5 c (x)

The uniqueness of C follows from the fact that { fx ) x P X } generates V*.

Also, for the linear functional e P V*, we have
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e( n ) 5 ^ t, n & 5 ^ t, h ( n ) & 5 ^ h (t), n &

for all n P V and any choice of t P T, whence

C (e) 5 F ( h (t)) 5 f (t) 5 (
x
t(x) c (x) 5 w n

6. EXTREME POINTS, FACES, AND FACETS OF V

We continue to assume that both T and V are strictly positive on X.

6.1. Lemma. If Y # X, then the evaluation functionals fy , y P Y, separate

the points in V iff { fy ) y P Y } ø {e} is a total set of linear functionals on V.

Proof. Suppose first that { fy ) y P Y } ø {e} is total and let v 1, v 2 P V
with fy( v 1) 5 fy( v 2) for all y P Y. Then v 1 2 v 2 P ker( fy) for all y P Y and

e( v 1 2 v 2) 5 1 2 1 5 0, so v 1 2 v 2 P ker(e), and it follows that v 1 2
v 2 5 0, so v 1 5 v 2.

Conversely, suppose { fy ) y P Y } separates the points in V and let n P
V with fy( n ) 5 e( n ) 5 0 for all y P Y. By Lemma 5.4, we have n 5 a a 2
b v with a, b . 0 and a , v P V . Thus 0 5 e( n ) 5 ae( a ) 2 be( v ) 5 a 2
b, so n 5 a( a 2 v ), and it follows that 0 5 fy( n ) 5 a( fy( a ) 2 fy( v )), whence

fy( a ) 5 fy( v ) for all y P Y. Because { fy ) y P Y } separates the points of V ,
we have a 5 v , so n 5 a( a 2 v ) 5 0. n

We denote the set of extreme points of a convex set G by ext( G ). By

the theorem of Minkowski±CaratheÂodory, if G is a polytope, then ext( G ) is

a finite set and G 5 con(ext( G )). The following theorem may be viewed as

asserting that the extreme points of the polytope V are the probability weights

with ª smallº supports.

6.2. Theorem (RuÈ ttimann ± KlaÈ y). If v P V , then v P ext( V ) iff the set
{ fy ) y P X \ supp( v ) } separates the points of V .

Proof. Let Y : 5 X \ supp( v ). Suppose first that { fy ) y P Y } separates

the points of V , v 5 a v 1 1 (1 2 a) v 2 with 0 , a , 1 and v 1, v 2 P V . Then

y P Y Þ 0 5 v ( y) 5 fy( v ) 5 afy( v 1) 1 (1 2 a)fy(w2)

and, owing to the fact that 0 # fy ( v 1), fy ( v 2), it follows that y P Y Þ fy( v 1)
5 fy ( v 2) 5 0. But { fy ) y P Y } separates points of V , so v 1 5 v 2, whence

v P ext( V ).

Conversely, suppose v P ext( V ) and let n P V with fy( n ) 5 e( n ) 5 0

for all y P Y. By Lemma 6.1, it will be sufficient to prove that n 5 0. Let
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a : 5 max H ) fx( n ) )
fx( v )

) x P supp( v ) 5 X \Y J
If a 5 0, then fx( n ) 5 0 for all x P X, so n 5 0 and we are done. Thus, we

may assume that a . 0. For x P supp( v ), we have

) fx( n ) ) # afx( v ) (1)

and, owing to the fact that fy( n ) 5 0 for all y P Y, the inequality (1) holds

for all x P X. From (1) and the fact that a . 0, we have

0 # fx( v ) 6 (1/a)fx( n ) 5 fx( v 6 (1/a) n )

for all x P X, from which it follows that v 6 (1/a) n P V +. Since e( n ) 5 0,
we also have e( v 6 (1/a) n ) 5 1, whence v 6 (1/a) n P V . But

v 5 1±2 ( v 1 (1/a) n ) 1 1±2 ( v 2 (1/a) n )

contradicting v P ext( V ). n

6.3. Definition. If G is a convex set and L # G , then L is a face of G
iff for all g 1, g 2 P G and all a P R with 0 , a , 1,

a g 1 1 (1 2 a) g 2 P L Û g 1, g 2 P L

Denote the set of all faces of G by ^( G ). A proper face of G is a face L P
^( G ) with L Þ G . A facet of G is a maximal proper face of G . The algebraic
interior of G is the set of all elements of G that belong to no proper face of G .

Thus a face of the convex set G is an extremal convex subset of G . Note

that ù , G P ^( G ) and that the intersection of faces of G is again a face of

G , so ^( G ) forms a complete lattice under set inclusion. The atoms in the

lattice ^( G ) are precisely the singleton subsets {g } for g P ext( G ) and the
facets of G are the coatoms in ^( G ). If f is a linear functional, r P R , and

g P G Þ f( g ) # r, then f 2 1 (r) ù G P ^( G ). A face having the latter form

is said to be exposed by the linear functional f. In particular, for the polytope

V , we have the following result.

6.4. Lemma. If x P X, then ( fx)
2 1 (1) ù V and ker( fx) ù V are exposed

faces of V .

Proof. For v P V , we have fx( v ) # 1 and ( 2 fx)( v ) # 0, so the face

( fx)
2 1 (1) ù V is exposed by fx and the face ker( fx) ù V is exposed by 2 fx. n

If G is a polytope, then each face L P ^( G ) is a polytope in its own

right, and L is a facet of G iff dim( L ) 5 dim( G ) 2 1. Every face of a polytope

is the intersection of the facets that contain it, the algebraic interior of a



Probability Weights and Measures on Finite Effect Algebras 3201

polytope coincides with its topological interior as calculated in its affine

span, and every nonempty polytope has a nonempty algebraic interior.

6.5. Theorem. The algebraic interior of V is the set of all strictly positive

elements of V .

Proof. First suppose that a P V is strictly positive, but that a is not in

the algebraic interior of V . Then there exists a proper face L of V with a P
L . Let v P V be an arbitrary probability weight. By Lemma 5.4, there are

real numbers a, b . 0 and a probability weight v 8 P V such that v 5 a a
2 b v 8. Thus 1 5 e( v ) 5 ae( a ) 2 be( v 8) 5 a 2 b, so a 5 b 1 1 . 1, (1/

a) v 1 (b/a) v 8 5 a P L with 0 , 1/a , 1, and (1/a) 1 (b/a) 5 1. Because

L P ^( V ), it follows that v P L and, since v was arbitrary, V 5 L ,

contradicting that fact that L is proper.

Conversely, suppose v 8 P V and v 8 is not strictly positive. Then there

exists x P X such that fx( v 8) 5 0. By Lemma 6.4, L : 5 ker( fx) ù V P
^( V ) with v 8 P L . By Lemma 6.1, there exists a strictly positive a P V .

Thus a ¸ L , so L is a proper face of V , and it follows that v 8 does not

belong to the algebraic interior of V . n

The following important theorem shows that every facet of V is exposed

by the negative of an evaluation functional.

6.6. Theorem (RuÈ ttimann ± KlaÈ y). If D is a facet of V , then there exists

x P X such that D 5 V ù ker( fx).

Proof. Suppose D 5 ù . Since D is a facet, it follows that V 5 {a } and,

since there is a strictly positive probability weight in V , a must be strictly

positive. Therefore, for any x P X, a ¸ ker( fx), so V ù ker( fx) 5 ù 5 D .

Thus, we may assume that D Þ ù , hence, that D has a nonempty algebraic
interior. Select v in the algebraic interior of D . Since v P D and D is a

proper face of V , it follows that v is not in the algebraic interior of V ,

whence there exists x P X such that fx( v ) 5 0 by Theorem 6.5. Let L : 5
V ù ker( fx), noting that L is a face of V and v P L . Thus D ù L is a face

of D and v P D ù L . Owing to the fact that v is in the algebraic interior

of D , it cannot belong to any proper face of D , and it follows that D ù L 5
D , that is, D # L . Since D is a maximal proper face of V , it follows that

either D 5 L or L 5 V . There is a strictly positive a P V , and a ¸ ker( fx),
so a ¸ L , and therefore D 5 L 5 V ù ker( fx). n

7. FACES AND SUPPORTS

Suppose that the elements of L represent propositions or effects associ-

ated with a physical system. Mielnik (1968), Ludwig (1983/85), and others
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have argued that the faces of the convex set of probability measures on L
correspond to properties or attributes of the system. On the other hand,

Foulis, et al. (1983) argued that such properties are represented by so-called
support sets. Our purpose in the present section is to generalize the notion

of a support set to our present context and to show how support sets are

related to faces of V . In what follows, we continue to assume that T and V
are strictly positive on X.

7.1. Definition. If Y is a nonempty subset of X and f P R X, define fY P
R Y to be the function obtained by restriction of f to Y. Also define TY : 5
{tY ) t P T }.

Note that the mapping f j fY is a linear surjection from R X onto R Y

and that f, g P R X with f # g Þ fY # gY in R Y.

7.2. Definition. If Y is a nonempty subset of X, then Y is a T-support
iff TY is an antichain. By special convention, the empty set ù # Y is also

regarded as a T-support . The set of all T-supports is denoted by 6(T ).

If T is understood, we denote 6(T ) by 6. Obviously, the union of T-
supports is again a T-support, whence 6 is a lattice under inclusion.

7.3. Lemma. v P V Þ supp( v ) P 6.

Proof. Let Y : 5 supp( v ). We have to prove that TY is an antichain in

R Y. Suppose s, t P T, sY # tY. If y P Y 5 supp( v ), then 0 , v ( y) and tY ( y) 2
sY( y) $ 0, whence 0 # v ( y)[tY ( y) 2 sY ( y)]. Also, v (x) 5 0 for x P X \Y,

and it follows that

( y P Y v ( y)[tY ( y) 2 sY ( y)] 5 ( x P X v (x)[t(x) 2 s(x)]

5 ^ v , t & 2 ^ v , s & 5 e(t) 2 e(s) 5 1 2 1 5 0

hence each summand satisfies v ( y)[tY ( y) 2 sY ( y)] 5 0. Since 0 , v ( y), it

follows that tY ( y) 2 sY ( y) 5 0 for all y P Y, whence sY 5 tY and TY is

an antichain. n

7.4. Definition. If L # V and Y # X, then:

(i) supp( L ) : 5 ø v P L supp( v ).

(ii) face (Y ) : 5 {v P V ) supp( v ) # Y }.

7.5. Theorem. If L , L 1, L 2, . . . , L k # V and Y, Y1, Y2, . . . , Yk # X, then:

(i) supp ( L ) P 6 and face(Y ) 5 ù {V ù ker( fx) ) x P X \Y } P ^( V ).

(ii) L 1 # L 2 Þ supp( L 1) # supp( L 2) and Y1 # Y2 Þ face(Y1) #
face(Y2).

(iii) supp( L ) # Y Û L # face(Y ).
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(iv) L # face(supp( L )) and supp(face(Y )) # Y.

(v) supp( L ) 5 supp(face(supp( L ))) and face(Y ) 5
face(supp(face(Y ))).

(vi) supp( ø i L i) 5 ø i supp( L i) and face( ù iYi) 5 ù i face(Yi).

Proof. (i) That supp( L ) P 6 follows from Lemma 7.3 and the fact that

6 is closed under unions. That face(Y ) 5 ù {V ù ker( fx) ) x P X \Y } is clear.

By Lemma 6.4, each V ù ker( fx) is an exposed face of V and the intersection

of faces is a face, so face(Y ) P ^( V ). Part (ii) is obvious and part (iii),

which is also obvious, shows that L j supp( L ) is a residuated mapping and
Y j face(Y ) is its dual residual mapping (Blyth and Janowitz, 1972). Parts

(iv)±(vi) can be checked directly, although they follow immediately from

the theory of residuated mappings. n

7.6. Lemma. If D is a facet of V , there exists x P X such that D 5
face(X \ {x}).

Proof. By Theorem 6.6, there exists x P X such that

D 5 ker( fx) ù V 5 {v P V ) x ¸ supp( v ) }

5 {v P V ) supp( v ) # X \ {x }} 5 face(X \ {x}) n

7.7. Theorem. If L P ^( V ), then L 5 face(supp( L )).

Proof. Evidently, ù 5 face(ù ) and ù 5 supp(ù ); therefore ù 5 face(s-
upp(ù )), so we may assume that L Þ ù . Thus there are facets D 1, D 2, . . . , D k

P ^( V ) such that L 5 D 1 ù D 2 ù . . . ù D k. By Lemma 7.6, there exist

Y1,Y2, . . . , Yk # X such that D i 5 face(Yi) for i 5 1,2, . . . , k. Let Y : 5 Y1 ù
Y2 ù . . . ù Yk. Then L 5 face(Y ) by part (vi) of Theorem 7.5, so by part

(v) of Theorem 7.5, L 5 face(supp(face(Y ))) 5 face(supp( L )). n

7.8. Corollary. If L 1, L 2 P ^( V ) then supp( L 1) # supp( L 2) Þ L 1 # L 2.

7.9. Corollary. If L # V , then face(supp( L )) is the smallest face of V
that contains L .

Proof. By parts (i) and (iv) of Theorem 7.5, L # face(supp( L )) P ^( V ).

Suppose L # D P ^( V ). Then by part (ii) of Theorem 7.5 and Theorem

7.7, face(supp( L )) # face(supp( D )) 5 D . n

7.1 0. Corollary. If v P V , then the following conditions are mutually
equivalent: (i) v P ext( V ); (ii) {v } P ^( V ); (iii) {v } 5 face(supp( v )); (iv)

v 8 P V , supp( v 8) # supp( v ) Þ v 8 5 v .

Proof. That (i) % (ii) is clear and (ii) Û (iii) by Corollary 7.9. Since

face(supp( v )) 5 {v 8 P V ) supp( v 8) # supp( v ) }, we have (iii) Û (iv). n
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7.11. Corollary. Every nonempty face of V has the form face(supp( v ))

for some v P V .

Proof. Suppose ù Þ G P ^( V ). Then G is a nonempty face of the

polytope V , whence G itself is a nonempty polytope, so there exists v in

the algebraic interior of G . Because v belongs to no proper face of G , it follows

that G is the smallest face of V that contains v , whence G 5 face(supp( v )) by
Corollary 7.9. n

If L P ^( V ), then supp( L ) P 6 by part (i) of Theorem 7.5, so Theorem
7.7 shows that Y j face(Y ) maps the support lattice 6 onto the face lattice

^( V ). On the other hand, although the mapping L j supp( L ) from ^( V )

to 6 is injective by Corollary 7.8, simple examples show that it need not

map the face lattice ^( V ) onto the support lattice 6. In fact, it maps ^( V )

onto the subset of 6 consisting of the so-called stochastic supports.

7.12. Definition. A support of the form supp( L ) for L # V is called a

stochastic support .

7.13. Lemma. If ù Þ Y P 6, then the following conditions are mutually

equivalent: (i) Y is a stochastic support; (ii) Y 5 supp(face(Y )); (iii) there exists

ù Þ G P ^( V ) with Y 5 supp( G ); (iv) Y 5 supp( v ) for some v P face(Y ).

Proof. (i) Þ (ii): If L # V and Y 5 supp( L ), then part (v) of Theorem

7.5 implies that Y 5 supp(face(supp( L ))) 5 supp(face(Y )). That (ii) Þ (iii)

follows from the fact that face(Y ) P ^( V ).

(iii) Þ (iv): If ù Þ G P ^( V ) with Y 5 supp( G ), Corollary 7.11

implies that G 5 face(supp( v )) for some v P V , whence Y 5 supp( G ) 5
supp(face(supp( v ))) 5 supp( v ). Also, v P face(supp( v )) 5 face(Y ). That

(iv) Þ (i) is obvious. n

In the following theorem and its proof, we use the notation of Defini-

tion 7.1.

7.14. Theorem (RuÈ ttimann ± KlaÈ y). Let ù Þ G P ^( V ) and let Y : 5
supp( G ) be the corresponding stochastic support. Then there is an order-

preserving vector space isomorphism F : V(TY) ® lin( G ) # V such that

F 2 1( n ) 5 n Y for n P lin( G ). Furthermore, F ( V (TY)) 5 G and e + F is the

intensity functional for V(TY).

Proof. Define F : V(TY) ® R X by

F ( h ) (x) : 5 H h (x) if x P Y

0 if x ¸ Y
for h P V(TY) and x P X

Clearly, F is linear, injective, order preserving, and F ( h ) 5 n Þ h 5 n Y .
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Let h P V(TY), n 5 F ( h ), and t P T. Then, owing to the fact that n (x) 5 0

for x ¸ Y, we have

^ h , tY & 5 o
y P Y

h ( y)t( y) 5 o
x P X

n (x)t(x) 5 ^ n , t & (1)

Because ^ h , tY & is independent of the choice of t P T, (1) implies that n 5
F ( h ) P V, so

F (V(TY)) # V (2)

Furthermore , by (1), (e + F )( h ) 5 e( n ) 5 ^ n , t & 5 ^ h , tY & , so e + F is the

intensity functional for V(TY).
If h P V (TY) 5 V(TY) ù ( R +)Y ù (e + F ) 2 1(1), then, by (2), F ( h ) P

V ù ( R +)X 5 V + and e( F ( h )) 5 1, whence F ( h ) P V . Thus,

F ( V (TY)) # V (3)

Clearly, supp( F ( V (TY))) # Y, so, by (3),

F ( V (TY)) # face(supp( F ( V (TY))) # face(Y ) 5 G (4)

By Lemma 7.13, there exists v P face(Y ) 5 G with Y 5 supp( v ).

Evidently, v Y P V (TY) and v Y is strictly positive on Y, so V (TY) is a strictly

positive set of TY -probability weights. Therefore, V(TY) 5 lin( V (TY)) by part

(ii) of Theorem 5.5. Consequently, by (4),

F (V(TY)) 5 lin( F ( V (TY))) # lin( G ) (5)

Suppose g P G . Then supp( g ) # supp( G ) 5 Y and g P G # V # ( R +)X,

so g Y P ( R +)Y. If t P T, then the fact that g (x) 5 0 for x P X \Y implies that

1 5 ^ g , t & 5 o
x P X

g (x)t(x) 5 o
y P Y

g ( y)t( y) 5 ^ g Y , tY &

whence g Y P V (TY) # V(TY). Evidently, F ( g Y) 5 g , and it follows that G #
F ( V (TY), so in view of (4), we have

F ( V (TY)) 5 G (6)

By (6),

lin( G ) 5 lin( F ( V (TY)) 5 F (lin( V (TY)) 5 F (V(TY))

so F is a linear isomorphism from V(TY) onto lin( G ). n

8. CALCULATING THE EXTREME POINTS OF V

We maintain our standing assumption that T and V are strictly positive
on X and turn our attention to the problem of calculating the extreme points

in V .
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8.1. Theorem. Let v P V with Y 5 supp( v ). Then the following condi-

tions are mutually equivalent:

(i) v P ext( V ).
(ii) There is a unique TY -probability weight (namely v Y).

(iii) rank(TY) 5 #Y.

Proof. Let G : 5 face(Y ) 5 face(supp( v )) in Theorem 7.14. By Corollary

7.1 0, v P ext( V ) iff G 5 {v } and by Theorem 7.14, v P G 5 F ( V (TY)),
whence (i) Û (ii). That (ii) Û (iii) follows from Theorem 5.7 with X replaced

by Y and T replaced by TY . n

For simplicity in what follows, let X 5 {1, 2, . . . , n } and identify each

function f P R X with the corresponding vector

f 5 ( f1, f2, . . . , fn) : 5 ( f (1), f (2), . . . , f (n))

in the coordinate Euclidean space R n. Thus T, V, V # R n. By Theorem 4.14,

we may replace T by a maximal linearly independent subset of T without

affecting V, V , or e, and we assume that this has been done. Thus, in

what follows,

m : 5 #T 5 rank(T ) # n and dim(V ) 5 n 1 1 2 m (1)

For purposes of calculation, it is convenient to represent T # R n as an

m 3 n matrix with the vectors in T as its rows. (The order in which these

rows are arranged is of no significance.) We also denote this matrix by T 5
[tij ], since one can tell from the context whether the set T or the matrix T is

intended. Note that the rank of the set T coincides with the rank of the matrix T.
The column vectors of the matrix T are understood to be labeled by the

elements of X 5 {1, 2, . . . , n }. Thus, if Y # X, then the set TY corresponds

to a truncated matrix, also denoted by TY , obtained by removing from the

matrix T all column vectors labeled by j P X \Y.

8.2. Theorem. Let v 5 ( v 1, v 2, . . . , v n) P ( R +)n with Y 5 supp( v ) 5
{j P X ) v j Þ 0}. Then v P ext( V ) iff there exists J # X with #J 5 m such

that the m 3 m matrix TJ is nonsingular, Y # J, and ( j P J tij v j 5 1 for i 5
1, 2, . . . , m.

Proof. Suppose v P ext( V ). Then part (iii) of Theorem 8.1 implies that

the column vectors in T labeled by j P Y are linearly independent, whence

these column vectors can be extended to a maximal set of linearly independent
column vectors labeled, say, by j P J # X. Thus, #J 5 rank(T ) 5 m and

the m 3 m matrix TJ is nonsingular. Since v j 5 0 for j ¸ J and ( j P X tij v j 5
1 for i 5 1, 2, . . . , m, it follows that ( j P J tij v j 5 1 for i 5 1, 2, . . . , m.

The converse also follows in an obvious way from Theorem 8.1. n
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8.3. Theorem (Greechie±Miller). If the vectors in T (or the row vectors

in the matrix T ) have only rational entries, then each vector v P ext( V ) has

only rational entries.

Proof. If the nonsingular matrix TJ in Theorem 8.2 has only rational

entries, then the system of m linear equations ( j P J tij v j 5 1 will have a

unique solution v j , j P J, consisting only of rational numbers. Since v j 5
0 for j ¸ J, it follows that v has only rational entries. n

As a corollary of Theorem 8.3, if a finite effect algebra L carries enough

probability measures m so that each nonzero element p of L has strictly
positive probability 0 , m ( p) for some m , then the convex set of all probability

measures on L forms a rational polytope, i.e., a polytope with extreme points

having only rational coordinates.

Theorem 8.2 provides a basis for the following algorithm for computing

ext( V ) given a strictly positive antichain T # ( R +)n.

8.4. Algorithm. Form an m 3 n matrix [tij ] of rank m, the rows of which

constitute a maximal linearly independent subset of the vectors in the original

set T. For each m-element subset J of {1, 2, . . . , n }, form the square m 3
m submatrix TJ of [tij ] consisting of the columns labeled by j P J. Check

each TJ for nonsingulari ty. If TJ is nonsingular, find the unique solution v j ,

j P J, of the system of linear equations ( j P J tij v j 5 1 for i 5 1, 2, . . . , m.
If 0 # v j for all j P J, then the vector v J : 5 ( v 1, v 2, . . . , v n) with v k 5 0

for k ¸ J is an extreme point of v . Every extreme point of V will show up

as an v J.

Using standard methods of matrix algebra, Algorithm 8.4 is easily imple-

mented on a computer, and it yields a reasonable technique for calculating

ext( V ) provided that n is not too large. However, the calculation requires
examining n!/[(n 2 m)! m!] square m 3 m submatrices TJ corresponding to

the m-element subsets J of X 5 {1, 2, . . . , n }, so it rapidly becomes impracti-

cal for larger values of n. We commend to others with more sophisticated

programming talents than ours the problem of improving Algorithm 8.4.
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